This article focuses on the best RAG (Retrieval-Augmented Generation) systems for local deployment on Windows, with Ollama support. Users with limited GPU memory but strong privacy concerns want to deploy efficient RAG solutions on their own computers. The author tested MaxKB, Openwebui, and Cherry Studio with embedding models like gte-qwen2-7b-instruct and Qwen3-Embedding-4B, but achieved mediocre results. The article invites the community to share comparative experiences to help users optimize their local AI deployments. This offers practical value for readers interested in local LLM applications, privacy protection, and cutting-edge technology evolution, especially those exploring AI solutions in resource-constrained environments.
Original Link:Linux.do
最新评论
照片令人惊艳。万分感谢 温暖。
氛围绝佳。由衷感谢 感受。 你的博客让人一口气读完。敬意 真诚。
实用的 杂志! 越来越好!
又到年底了,真快!
研究你的文章, 我体会到美好的心情。
感谢激励。由衷感谢
好久没见过, 如此温暖又有信息量的博客。敬意。
很稀有, 这么鲜明的文字。谢谢。