近日,一位开发者分享了LangChain V1的实验仓库整理经验。在研究过程中,作者发现文档与旧教程不匹配,踩了不少坑,因此整理了一个包含RAG检索增强生成、Agent工具调用和Workflow多步骤流转等核心组件的最小可行示例。仓库还包括FastAPI后端骨架、环境脚本和可直接运行的demo,旨在帮助开发者快速上手,节省时间。项目保持简洁,避免复杂框架,确保用户能直接运行,无需担心兼容性问题。对于正在使用LangChain V1的开发者来说,这是一个实用的开源项目,提供了完整的演示和代码示例,值得深入探索和学习。
原文链接:Linux.do






AI周刊:大模型、智能体与产业动态追踪
程序员数学扫盲课
冲浪推荐:AI工具与技术精选导航
Claude Code 全体系指南:AI 编程智能体实战
最新评论
朝鲜的互联网基础设施一直是黑箱,这次调查很有价值。光纤网络的物理布局确实能反映很多信息,比如重点区域和网络拓扑。
RSS+AI的组合确实很有价值,信息过载时代确实需要智能筛选。建议增加一下跨来源的内容去重功能,避免重复推送同一话题。
侧边栏调用Gemini的思路很实用,不需要切换标签页就能使用AI。不过想了解一下是否支持自定义API Key,使用官方API可能会有限制。
登录重定向问题确实很烦人,特别是对于刚上线的项目。这个解决方案的思路很清晰,不过不同框架的实现可能需要调整。
注册流程的漏洞分析很有价值,小号入侵是很多平台都面临的问题。建议补充一下防御机制的实现细节,比如设备指纹和行为分析。
ClaudeCode在复杂项目上的表现确实不错,特别是对上下文的理解能力。不过想了解一下生成代码的可维护性如何,是否需要大量人工调整?
小团队确实需要更精简的技术栈,AI优先的思路很有前瞻性。不过团队成员的技术栈可能会比较分散,维护成本如何控制?
云服务的credits使用策略确实容易踩坑,特别是对于第三方模型的限制。建议用户在使用前仔细阅读服务条款,避免浪费额度。